18 research outputs found

    Identification of distinctive physiological and molecular responses to salt stress among tolerant and sensitive cultivars of broccoli (Brassica oleracea var. Italica)

    Get PDF
    [EN] Background Salt stress is one of the main constraints determining crop productivity, and therefore one of the main limitations for food production. The aim of this study was to characterize the salt stress response at the physiological and molecular level of different Broccoli (Brassica oleracea L. var. Italica Plenck) cultivars that were previously characterized in field and greenhouse trials as salt sensitive or salt tolerant. This study aimed to identify functional and molecular traits capable of predicting the ability of uncharacterized lines to cope with salt stress. For this purpose, this study measured different physiological parameters, hormones and metabolites under control and salt stress conditions. Results This study found significant differences among cultivars for stomatal conductance, transpiration, methionine, proline, threonine, abscisic acid, jasmonic acid and indolacetic acid. Salt tolerant cultivars were shown to accumulate less sodium and potassium in leaves and have a lower sodium to potassium ratio under salt stress. Analysis of primary metabolites indicated that salt tolerant cultivars have higher concentrations of several intermediates of the Krebs cycle and the substrates of some anaplerotic reactions. Conclusions This study has found that the energetic status of the plant, the sodium extrusion and the proline content are the limiting factors for broccoli tolerance to salt stress. Our results establish physiological and molecular traits useful as distinctive markers to predict salt tolerance in Broccoli or to design novel biotechnological or breeding strategies for improving broccoli tolerance to salt stress.This work was funded by Grant RTC-2017-6468-2-AR (APROXIMACIONES MOLECULARES PARA INCREMENTAR LA TOLERANCIA A SALINIDAD Y SEQUiA DEL BROCOLI) funded by MCIN/AEI/10.13039/501100011033 and by "ERDF A way of making Europe" by the European Union. S.C. is a recipient of grant FPU19/01977 from the Spanish Ministerio de Universidades. L.M. was supported by the Spanish MICINN (PTA2019-018094). L.M and A.V. activities were founded by Prometeu program (IMAGINA project, PROMETEU/2019/110). CEAM foundation is funded by Generalitat Valenciana. None of the funding bodies has participated in the design of the study or the collection, analysis, interpretation of data, nor in writing the manuscript.Chevilly-Tena, S.; Dolz-Edo, L.; Morcillo, L.; Vilagrosa, A.; López-Nicolás, JM.; Yenush, L.; Mulet, JM. (2021). Identification of distinctive physiological and molecular responses to salt stress among tolerant and sensitive cultivars of broccoli (Brassica oleracea var. Italica). BMC Plant Biology. 21(1):1-16. https://doi.org/10.1186/s12870-021-03263-4S11621

    Deciphering dynamic dose responses of natural promoters and single cis elements upon osmotic and oxidative stress in yeast

    Full text link
    [EN] Fine-tuned activation of gene expression in response to stress is the result of dynamic interactions of transcription factors with specific promoter binding sites. In the study described here we used a time-resolved luciferase reporter assay in living Saccharomyces cerevisiae yeast cells to gain insights into how osmotic and oxidative stress signals modulate gene expression in a dose-sensitive manner. Specifically, the dose-response behavior of four different natural promoters (GRE2, CTT1, SOD2, and CCP1) reveals differences in their sensitivity and dynamics in response to different salt and oxidative stimuli. Characteristic dose-response profiles were also obtained for artificial promoters driven by only one type of stress-regulated consensus element, such as the cyclic AMP-responsive element, stress response element, or AP-1 site. Oxidative and osmotic stress signals activate these elements separately and with different sensitivities through different signaling molecules. Combination of stress-activated cis elements does not, in general, enhance the absolute expression levels; however, specific combinations can increase the inducibility of the promoter in response to different stress doses. Finally, we show that the stress tolerance of the cell critically modulates the dynamics of its transcriptional response in the case of oxidative stress.This work was supported by the Ministerio de Economa y Competitividad (grant BFU2011-23326 to M.P.) and the Ministerio de Ciencia e Innovacion (predoctoral FPI grant to A.R.).Dolz Edo, L.; Rienzo, A.; Poveda Huertes, D.; Pascual-Ahuir Giner, MD.; Proft, MH. (2013). Deciphering dynamic dose responses of natural promoters and single cis elements upon osmotic and oxidative stress in yeast. Molecular and Cellular Biology. 33(11):2228-2240. https://doi.org/10.1128/MCB.00240-13222822403311Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., … Brown, P. O. (2000). Genomic Expression Programs in the Response of Yeast Cells to Environmental Changes. Molecular Biology of the Cell, 11(12), 4241-4257. doi:10.1091/mbc.11.12.4241Ni, L., Bruce, C., Hart, C., Leigh-Bell, J., Gelperin, D., Umansky, L., … Snyder, M. (2009). Dynamic and complex transcription factor binding during an inducible response in yeast. Genes & Development, 23(11), 1351-1363. doi:10.1101/gad.1781909Posas, F., Chambers, J. R., Heyman, J. A., Hoeffler, J. P., de Nadal, E., & Ariño, J. (2000). The Transcriptional Response of Yeast to Saline Stress. Journal of Biological Chemistry, 275(23), 17249-17255. doi:10.1074/jbc.m910016199Rep, M., Krantz, M., Thevelein, J. M., & Hohmann, S. (2000). The Transcriptional Response ofSaccharomyces cerevisiaeto Osmotic Shock. Journal of Biological Chemistry, 275(12), 8290-8300. doi:10.1074/jbc.275.12.8290Yale, J., & Bohnert, H. J. (2001). Transcript Expression inSaccharomyces cerevisiaeat High Salinity. Journal of Biological Chemistry, 276(19), 15996-16007. doi:10.1074/jbc.m008209200Causton, H. C., Ren, B., Koh, S. S., Harbison, C. T., Kanin, E., Jennings, E. G., … Young, R. A. (2001). Remodeling of Yeast Genome Expression in Response to Environmental Changes. Molecular Biology of the Cell, 12(2), 323-337. doi:10.1091/mbc.12.2.323MartĂ­nez-Pastor, M. T., Marchler, G., SchĂĽller, C., Marchler-Bauer, A., Ruis, H., & Estruch, F. (1996). The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). The EMBO Journal, 15(9), 2227-2235. doi:10.1002/j.1460-2075.1996.tb00576.xSchmitt, A. P., & McEntee, K. (1996). Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences, 93(12), 5777-5782. doi:10.1073/pnas.93.12.5777Beck, T., & Hall, M. N. (1999). The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature, 402(6762), 689-692. doi:10.1038/45287Gorner, W., Durchschlag, E., Martinez-Pastor, M. T., Estruch, F., Ammerer, G., Hamilton, B., … Schuller, C. (1998). Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes & Development, 12(4), 586-597. doi:10.1101/gad.12.4.586Saito, H., & Posas, F. (2012). Response to Hyperosmotic Stress. Genetics, 192(2), 289-318. doi:10.1534/genetics.112.140863De Nadal, E., Ammerer, G., & Posas, F. (2011). Controlling gene expression in response to stress. Nature Reviews Genetics, 12(12), 833-845. doi:10.1038/nrg3055MartĂ­nez-Montañés, F., Pascual-Ahuir, A., & Proft, M. (2010). Toward a Genomic View of the Gene Expression Program Regulated by Osmostress in Yeast. OMICS: A Journal of Integrative Biology, 14(6), 619-627. doi:10.1089/omi.2010.0046Alepuz, P. M. (2003). Osmostress-induced transcription by Hot1 depends on a Hog1-mediated recruitment of the RNA Pol II. The EMBO Journal, 22(10), 2433-2442. doi:10.1093/emboj/cdg243Nadal, E. d., Casadome, L., & Posas, F. (2003). Targeting the MEF2-Like Transcription Factor Smp1 by the Stress-Activated Hog1 Mitogen-Activated Protein Kinase. Molecular and Cellular Biology, 23(1), 229-237. doi:10.1128/mcb.23.1.229-237.2003Proft, M. (2001). Regulation of the Sko1 transcriptional repressor by the Hog1 MAP kinase in response to osmotic stress. The EMBO Journal, 20(5), 1123-1133. doi:10.1093/emboj/20.5.1123Proft, M., & Serrano, R. (1999). Repressors and Upstream Repressing Sequences of the Stress-RegulatedENA1Gene inSaccharomyces cerevisiae: bZIP Protein Sko1p Confers HOG-Dependent Osmotic Regulation. Molecular and Cellular Biology, 19(1), 537-546. doi:10.1128/mcb.19.1.537Rep, M., Reiser, V., Gartner, U., Thevelein, J. M., Hohmann, S., Ammerer, G., & Ruis, H. (1999). Osmotic Stress-Induced Gene Expression inSaccharomyces cerevisiaeRequires Msn1p and the Novel Nuclear Factor Hot1p. Molecular and Cellular Biology, 19(8), 5474-5485. doi:10.1128/mcb.19.8.5474Ruiz-Roig, C., Noriega, N., Duch, A., Posas, F., & de Nadal, E. (2012). The Hog1 SAPK controls the Rtg1/Rtg3 transcriptional complex activity by multiple regulatory mechanisms. Molecular Biology of the Cell, 23(21), 4286-4296. doi:10.1091/mbc.e12-04-0289Vendrell, A., MartĂ­nez-Pastor, M., González-Novo, A., Pascual-Ahuir, A., Sinclair, D. A., Proft, M., & Posas, F. (2011). Sir2 histone deacetylase prevents programmed cell death caused by sustained activation of the Hog1 stress-activated protein kinase. EMBO reports, 12(10), 1062-1068. doi:10.1038/embor.2011.154De Nadal, E., Zapater, M., Alepuz, P. M., Sumoy, L., Mas, G., & Posas, F. (2004). The MAPK Hog1 recruits Rpd3 histone deacetylase to activate osmoresponsive genes. Nature, 427(6972), 370-374. doi:10.1038/nature02258Proft, M., & Struhl, K. (2002). Hog1 Kinase Converts the Sko1-Cyc8-Tup1 Repressor Complex into an Activator that Recruits SAGA and SWI/SNF in Response to Osmotic Stress. Molecular Cell, 9(6), 1307-1317. doi:10.1016/s1097-2765(02)00557-9Zapater, M., Sohrmann, M., Peter, M., Posas, F., & de Nadal, E. (2007). Selective Requirement for SAGA in Hog1-Mediated Gene Expression Depending on the Severity of the External Osmostress Conditions. Molecular and Cellular Biology, 27(11), 3900-3910. doi:10.1128/mcb.00089-07Capaldi, A. P., Kaplan, T., Liu, Y., Habib, N., Regev, A., Friedman, N., & O’Shea, E. K. (2008). Structure and function of a transcriptional network activated by the MAPK Hog1. Nature Genetics, 40(11), 1300-1306. doi:10.1038/ng.235Cook, K. E., & O’Shea, E. K. (2012). Hog1 Controls Global Reallocation of RNA Pol II upon Osmotic Shock in Saccharomyces cerevisiae. G3: Genes|Genomes|Genetics, 2(9), 1129-1136. doi:10.1534/g3.112.003251Proft, M., Gibbons, F. D., Copeland, M., Roth, F. P., & Struhl, K. (2005). Genomewide Identification of Sko1 Target Promoters Reveals a Regulatory Network That Operates in Response to Osmotic Stress inSaccharomyces cerevisiae. Eukaryotic Cell, 4(8), 1343-1352. doi:10.1128/ec.4.8.1343-1352.2005Vincent, A. C., & Struhl, K. (1992). ACR1, a yeast ATF/CREB repressor. Molecular and Cellular Biology, 12(12), 5394-5405. doi:10.1128/mcb.12.12.5394Wong, K. H., & Struhl, K. (2011). The Cyc8-Tup1 complex inhibits transcription primarily by masking the activation domain of the recruiting protein. Genes & Development, 25(23), 2525-2539. doi:10.1101/gad.179275.111Ikner, A., & Shiozaki, K. (2005). Yeast signaling pathways in the oxidative stress response. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 569(1-2), 13-27. doi:10.1016/j.mrfmmm.2004.09.006Temple, M. D., Perrone, G. G., & Dawes, I. W. (2005). Complex cellular responses to reactive oxygen species. Trends in Cell Biology, 15(6), 319-326. doi:10.1016/j.tcb.2005.04.003Toone, W. M., & Jones, N. (1999). AP-1 transcription factors in yeast. Current Opinion in Genetics & Development, 9(1), 55-61. doi:10.1016/s0959-437x(99)80008-2Brombacher, K., Fischer, B. B., RĂĽfenacht, K., & Eggen, R. I. L. (2006). The role of Yap1p and Skn7p-mediated oxidative stress response in the defence ofSaccharomyces cerevisiae against singlet oxygen. Yeast, 23(10), 741-750. doi:10.1002/yea.1392Lee, J., Godon, C., Lagniel, G., Spector, D., Garin, J., Labarre, J., & Toledano, M. B. (1999). Yap1 and Skn7 Control Two Specialized Oxidative Stress Response Regulons in Yeast. Journal of Biological Chemistry, 274(23), 16040-16046. doi:10.1074/jbc.274.23.16040Fernandes, L., Rodrigues-Pousada, C., & Struhl, K. (1997). Yap, a novel family of eight bZIP proteins in Saccharomyces cerevisiae with distinct biological functions. Molecular and Cellular Biology, 17(12), 6982-6993. doi:10.1128/mcb.17.12.6982Gulshan, K., Rovinsky, S. A., Coleman, S. T., & Moye-Rowley, W. S. (2005). Oxidant-specific Folding of Yap1p Regulates Both Transcriptional Activation and Nuclear Localization. Journal of Biological Chemistry, 280(49), 40524-40533. doi:10.1074/jbc.m504716200Kuge, S. (1997). Regulation of yAP-1 nuclear localization in response to oxidative stress. The EMBO Journal, 16(7), 1710-1720. doi:10.1093/emboj/16.7.1710Delaunay, A., Isnard, A.-D., & Toledano, M. B. (2000). H2O2 sensing through oxidation of the Yap1 transcription factor. The EMBO Journal, 19(19), 5157-5166. doi:10.1093/emboj/19.19.5157Kuge, S., Arita, M., Murayama, A., Maeta, K., Izawa, S., Inoue, Y., & Nomoto, A. (2001). Regulation of the Yeast Yap1p Nuclear Export Signal Is Mediated by Redox Signal-Induced Reversible Disulfide Bond Formation. Molecular and Cellular Biology, 21(18), 6139-6150. doi:10.1128/mcb.21.18.6139-6150.2001Koziol, S., Zagulski, M., Bilinski, T., & Bartosz, G. (2005). Antioxidants protect the yeastSaccharomyces cerevisiaeagainst hypertonic stress. Free Radical Research, 39(4), 365-371. doi:10.1080/10715760500045855Bilsland, E., Molin, C., Swaminathan, S., Ramne, A., & Sunnerhagen, P. (2004). Rck1 and Rck2 MAPKAP kinases and the HOG pathway are required for oxidative stress resistance. Molecular Microbiology, 53(6), 1743-1756. doi:10.1111/j.1365-2958.2004.04238.xRienzo, A., Pascual-Ahuir, A., & Proft, M. (2012). The use of a real-time luciferase assay to quantify gene expression dynamics in the living yeast cell. Yeast, 29(6), 219-231. doi:10.1002/yea.2905Baker Brachmann, C., Davies, A., Cost, G. J., Caputo, E., Li, J., Hieter, P., & Boeke, J. D. (1998). Designer deletion strains derived fromSaccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast, 14(2), 115-132. doi:10.1002/(sici)1097-0061(19980130)14:23.0.co;2-2Winzeler, E. A. (1999). Functional Characterization of the S. cerevisiae Genome by Gene Deletion and Parallel Analysis. Science, 285(5429), 901-906. doi:10.1126/science.285.5429.901Galiazzo, F., & Labbe-Bois, R. (1993). Regulation of Cu,Zn- and Mn-superoxide dismutase transcription in Saccharomyces cerevisiae. FEBS Letters, 315(2), 197-200. doi:10.1016/0014-5793(93)81162-sGaray-Arroyo, A., & Covarrubias, A. A. (1999). Three genes whose expression is induced by stress inSaccharomyces cerevisiae. Yeast, 15(10A), 879-892. doi:10.1002/(sici)1097-0061(199907)15:10a3.0.co;2-qKwon, M. (2003). Oxidative stresses elevate the expression of cytochrome c peroxidase in Saccharomyces cerevisiae. Biochimica et Biophysica Acta (BBA) - General Subjects, 1623(1), 1-5. doi:10.1016/s0304-4165(03)00151-xPascual-Ahuir, A., Posas, F., Serrano, R., & Proft, M. (2001). Multiple Levels of Control Regulate the Yeast cAMP-response Element-binding Protein Repressor Sko1p in Response to Stress. Journal of Biological Chemistry, 276(40), 37373-37378. doi:10.1074/jbc.m105755200SchĂĽller, C., Brewster, J. L., Alexander, M. R., Gustin, M. C., & Ruis, H. (1994). The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. The EMBO Journal, 13(18), 4382-4389. doi:10.1002/j.1460-2075.1994.tb06758.xAguilera, J., & Prieto, J. (2001). The Saccharomyces cerevisiae aldose reductase is implied in the metabolism of methylglyoxal in response to stress conditions. Current Genetics, 39(5-6), 273-283. doi:10.1007/s002940100213Aguilera, J., RodrĂ­guez-Vargas, S., & Prieto, J. A. (2005). The HOG MAP kinase pathway is required for the induction of methylglyoxal-responsive genes and determines methylglyoxal resistance in Saccharomyces cerevisiae. Molecular Microbiology, 56(1), 228-239. doi:10.1111/j.1365-2958.2005.04533.xAzevedo, D., Tacnet, F., Delaunay, A., Rodrigues-Pousada, C., & Toledano, M. B. (2003). Two redox centers within Yap1 for H2O2 and thiol-reactive chemicals signaling. Free Radical Biology and Medicine, 35(8), 889-900. doi:10.1016/s0891-5849(03)00434-9Proft, M., & Struhl, K. (2004). MAP Kinase-Mediated Stress Relief that Precedes and Regulates the Timing of Transcriptional Induction. Cell, 118(3), 351-361. doi:10.1016/j.cell.2004.07.016Rep, M., Albertyn, J., Thevelein, J. M., Prior, B. A., & Hohmann, S. (1999). Different signalling pathways contribute to the control of GPD1 gene expression by osmotic stress in Saccharomyces cerevisiae. Microbiology, 145(3), 715-727. doi:10.1099/13500872-145-3-71

    Distinctive Traits for Drought and Salt Stress Tolerance in Melon (Cucumis melo L.)

    Get PDF
    Melon (Cucumis melo L.) is a crop with important agronomic interest worldwide. Because of the increase of drought and salinity in many cultivation areas as a result of anthropogenic global warming, the obtention of varieties tolerant to these conditions is a major objective for agronomical improvement. The identification of the limiting factors for stress tolerance could help to define the objectives and the traits which could be improved by classical breeding or other techniques. With this objective, we have characterized, at the physiological and biochemical levels, two different cultivars (sensitive or tolerant) of two different melon varieties (Galia and Piel de Sapo) under controlled drought or salt stress. We have performed physiological measurements, a complete amino acid profile and we have determined the sodium, potassium and hormone concentrations. This has allowed us to determine that the distinctive general trait for salt tolerance in melon are the levels of phenylalanine, histidine, proline and the Na+/K+ ratio, while the distinctive traits for drought tolerance are the hydric potential, isoleucine, glycine, phenylalanine, tryptophan, serine, and asparagine. These could be useful markers for breeding strategies or to predict which varieties are likely perform better under drought or salt stress. Our study has also allowed us to identify which metabolites and physiological traits are differentially regulated upon salt and drought stress between different varieties.SC was a recipient of grant FPU19/01977 from the Spanish Ministerio de Universidades. LM and AV activities were funded by the Prometeu program (IMAGINA project, PROMETEU/2019/110). LM was also supported by the Spanish MICINN (PTA2019-018094). The CEAM foundation was funded by the Generalitat Valenciana

    The yeast protein kinase Sch9 adjusts V-ATPase assembly/disassembly to control pH homeostasis and longevity in response to glucose availability

    Get PDF
    The evolutionary conserved TOR complex 1 controls growth in response to the quality and quantity of nutrients such as carbon and amino acids. The protein kinase Sch9 is the main TORC1 effector in yeast. However, only few of its direct targets are known. In this study, we performed a genome-wide screening looking for mutants which require Sch9 function for their survival and growth. In this way, we identified multiple components of the highly conserved vacuolar proton pump (V-ATPase) which mediates the luminal acidification of multiple biosynthetic and endocytic organelles. Besides a genetic interaction, we found Sch9 also physically interacts with the V- ATPase to regulate its assembly state in response to glucose availability and TORC1 activity. Moreover, the interaction with the V-ATPase has consequences for ageing as it allowed Sch9 to control vacuolar pH and thereby trigger either lifespan extension or lifespan shortening. Hence, our results provide insights into the signaling mechanism coupling glucose availability, TORC1 signaling, pH homeostasis and longevity. As both Sch9 and the V-ATPase are highly conserved and implicated in various pathologies, these results offer fertile ground for further research in higher eukaryotes

    Identification of Distinctive Primary Metabolites Influencing Broccoli (<i>Brassica oleracea</i>, var. <i>Italica</i>) Taste

    No full text
    Broccoli (Brassica oleracea L. var. Italica Plenck) is a cruciferous crop that is considered to be a good source of micronutrients. Better taste is a main objective for breeding, as consumers are demanding novel cultivars suited for a healthy diet, but ones that are more palatable. This study aimed to identify primary metabolites related to cultivars with better taste according to a consumer panel. For this purpose, we performed a complete primary metabolomic profile of 20 different broccoli cultivars grown in the field and contrasted the obtained data with the results of a consumer panel which evaluated the taste of the same raw buds. A statistical analysis was conducted to find primary metabolites correlating with better score in the taste panels. According to our results, sugar content is not a distinctive factor for taste in broccoli. The accumulation of the amino acids leucine, lysine and alanine, together with Myo-inositol, negatively affected taste, while a high content of γ-aminobutyric acid (GABA) is a distinctive trait for cultivars scoring high in the consumer panels. A Principal Component Analysis (PCA) allowed us to define three different groups according to the metabolomic profile of the 20 broccoli cultivars studied. Our results suggest molecular traits that could be useful as distinctive markers to predict better taste in broccoli or to design novel biotechnological or classical breeding strategies for improving broccoli taste

    Physiological and Molecular Characterization of the Differential Response of Broccoli (Brassica oleracea var. Italica) Cultivars Reveals Limiting Factors for Broccoli Tolerance to Drought Stress

    No full text
    Broccoli is a cruciferous crop rich in health-promoting metabolites. Due to several factors, including anthropogenic global warming, aridity is increasing in many cultivation areas. There is a great demand to characterize the drought response of broccoli and use this knowledge to develop new cultivars able to maintain yield under water constraints. The aim of this study is to characterize the drought response at the physiological and molecular level of different broccoli (Brassica oleracea L. var. Italica Plenck) cultivars, previously characterized as drought-sensitive or drought-tolerant. This approach aims to identify different traits, which can constitute limiting factors for drought stress tolerance in broccoli. For this purpose, we have compared several physiological parameters and the complete profiles of amino acids, primary metabolites, hormones, and ions of drought-tolerant and drought-sensitive cultivars under stress and control conditions. We have found that drought-tolerant cultivars presented higher levels of methionine and abscisic acid and lower amounts of urea, quinic acid, and the gluconic acid lactone. Interestingly, we have also found that a drought treatment increases the levels of most essential amino acids in leaves and in florets. Our results have established physiological and molecular traits useful as distinctive markers to predict drought tolerance in broccoli or which could be reliably used for breeding new cultivars adapted to water scarcity. We have also found that a drought treatment increases the content of essential amino acids in broccoli.The authors thank Prof. Angel Maquieira for generously providing the technical equipment required for ion determination. S.C.’s work was funded by Grant FPU19/01977 from the Spanish Ministerio de Universidades. This work was funded by the RTC-2017-6468-2-AR project (APROXIMACIONES MOLECULARES PARA INCREMENTAR LA TOLERANCIA A SALINIDAD Y SEQUíA DEL BRÓCOLI) awarded by the “Agencia estatal de Investigación”. L.M. was supported by the Spanish MICINN (PTA2019-018094). Activities of L.M. and A.V. were funded by the Prometeu program (IMAGINA project, PROMETEU/2019/110). The CEAM foundation is funded by Generalitat Valenciana. The authors thank SAKATA for the generous gift of plant material

    The yeast protein kinase Sch9 adjusts V-ATPase assembly/disassembly to control pH homeostasis and longevity in response to glucose availability

    Get PDF
    The conserved protein kinase Sch9 is a central player in the nutrient-induced signaling network in yeast, although only few of its direct substrates are known. We now provide evidence that Sch9 controls the vacuolar proton pump (V-ATPase) to maintain cellular pH homeostasis and ageing. A synthetic sick phenotype arises when deletion of SCH9 is combined with a dysfunctional V-ATPase, and the lack of Sch9 has a significant impact on cytosolic pH (pHc) homeostasis. Sch9 physically interacts with, and influences glucose-dependent assembly/disassembly of the V-ATPase, thereby integrating input from TORC1. Moreover, we show that the role of Sch9 in regulating ageing is tightly connected with V-ATPase activity and vacuolar acidity. As both Sch9 and the V-ATPase are highly conserved in higher eukaryotes, it will be interesting to further clarify their cooperative action on the cellular processes that influence growth and ageing.status: publishe

    Function of Sch9 in regulating ageing is dependent on V-ATPase activity.

    No full text
    <p>With the exception of panel E, all chronological ageing data represent measurements performed on cells at day 8 in stationary phase. (A) Cell survival and (B) ROS determination of strains aged in non-buffered fully supplemented medium as determined by flow cytometry. (C) Cell survival and (D) ROS levels of strains aged in fully supplemented medium buffered at pH 5.5 as determined by flow cytometry. (E) Cell survival of strains grown in buffered medium at day 23 in stationary phase as determined by CFU counting. (F) pH of the culture medium of ageing cells grown in buffered medium. (G) Cell survival and (H) ROS determination of strains grown in medium containing the indicated concentration of methionine as determined by flow cytometry. Results depicted are mean values ± SD. (I) Sch9 affects pHv. Vacuolar pH was measured during exponential growth and during glucose starvation using the ratiometric fluorescent pH indicator BCECF-AM. Results depicted are mean values ± SEM of four independent experiments. All differences between strains and conditions are statistically significant unless stated as ns (not significant). A detailed statistical analysis is presented in <b><a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1006835#pgen.1006835.s013" target="_blank">S3 Table</a></b>. See also <b><a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1006835#pgen.1006835.s007" target="_blank">S7</a> and <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1006835#pgen.1006835.s008" target="_blank">S8</a> Figs</b>.</p

    Effects on colony size and growth by deletion of <i>VPH1</i>, <i>STV1</i> and/or <i>SCH9</i>.

    No full text
    <p>(A, B) A synthetic sick phenotype arises when deletion of <i>SCH9</i> is combined with a fully dysfunctional V-ATPase. (A) Tetrad dissection of the diploid strain JW 04 952 (<i>sch9Δ/SCH9 vph1Δ/VPH1 stv1Δ/STV1</i>). (B) Colony sizes were calculated, normalized relative to WT and are shown as mean values ± SD. Letters indicate groups of strains with a significant difference in colony size (p < 0.001, one-way ANOVA). (C, D) Strains combining deletion of <i>SCH9</i> with a fully dysfunctional V-ATPase show a deteriorated growth phenotype. OD<sub>600nm</sub> was followed over time in fully supplemented medium without buffer (C) or buffered at pH 5 (D). A representative experiment with at least 4 independent colonies for each strain is shown. Error bars represent SD from the mean. See also <b><a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1006835#pgen.1006835.s004" target="_blank">S4</a> and <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1006835#pgen.1006835.s005" target="_blank">S5</a> Figs</b>.</p
    corecore